Comparison of automatic and visual methods used for image segmentation in Endodontics: a microCT study
نویسندگان
چکیده
OBJECTIVE To calculate root canal volume and surface area in microCT images, an image segmentation by selecting threshold values is required, which can be determined by visual or automatic methods. Visual determination is influenced by the operator's visual acuity, while the automatic method is done entirely by computer algorithms. To compare between visual and automatic segmentation, and to determine the influence of the operator's visual acuity on the reproducibility of root canal volume and area measurements. MATERIAL AND METHODS Images from 31 extracted human anterior teeth were scanned with a μCT scanner. Three experienced examiners performed visual image segmentation, and threshold values were recorded. Automatic segmentation was done using the "Automatic Threshold Tool" available in the dedicated software provided by the scanner's manufacturer. Volume and area measurements were performed using the threshold values determined both visually and automatically. RESULTS The paired Student's t-test showed no significant difference between visual and automatic segmentation methods regarding root canal volume measurements (p=0.93) and root canal surface (p=0.79). CONCLUSION Although visual and automatic segmentation methods can be used to determine the threshold and calculate root canal volume and surface, the automatic method may be the most suitable for ensuring the reproducibility of threshold determination.
منابع مشابه
Evaluation of Retinal Optic Disc Segmentation in Patients with Glaucoma and Comparison with Other Methods of Medical Image Processing
Introduction: Glaucoma is the most common cause of blindness in some countries. In the meantime, the field of retinal image processing has been proposed in order to provide automatic systems for disease diagnosis. Among the methods of medical image processing, image segmentation is a process of identification and change in the display of an image. The objective of this study was to use t...
متن کاملEvaluation of Retinal Optic Disc Segmentation in Patients with Glaucoma and Comparison with Other Methods of Medical Image Processing
Introduction: Glaucoma is the most common cause of blindness in some countries. In the meantime, the field of retinal image processing has been proposed in order to provide automatic systems for disease diagnosis. Among the methods of medical image processing, image segmentation is a process of identification and change in the display of an image. The objective of this study was to use t...
متن کاملAutomatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique
The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملPlant Classification in Images of Natural Scenes Using Segmentations Fusion
This paper presents a novel approach to automatic classifying and identifying of tree leaves using image segmentation fusion. With the development of mobile devices and remote access, automatic plant identification in images taken in natural scenes has received much attention. Image segmentation plays a key role in most plant identification methods, especially in complex background images. Wher...
متن کامل